三元短期地位不改,811技術(shù)全面普及仍需時日
三元材料目前是動力電池最優(yōu)之選。自鋰離子電池技術(shù)普及以來,學(xué)術(shù)界出現(xiàn)了各種各樣的電池體系,但是從實際應(yīng)用來看,目前負極材料多選擇石墨,而正極材料主流為鈷酸鋰、磷酸鐵鋰、三元、錳酸鋰等材料。動力電池要求材料具有較高的能量密度(對應(yīng)高續(xù)航里程)和高安全性,而鈷酸鋰由于其本身熱穩(wěn)定性最差(安全性差),不適用于動力電池領(lǐng)域(但憑借高壓實密度和能量密度目前是3C 領(lǐng)域主流),而錳酸鋰能量密度較低應(yīng)用受限,磷酸鐵鋰作為較早研發(fā)的技術(shù),優(yōu)點是安全性極好、環(huán)保、循環(huán)壽命高,但缺點在于能量密度較低且已經(jīng)接近達到天花板,而三元本身有著高能量密度上限的優(yōu)勢,未來隨著技術(shù)繼續(xù)進步,安全性問題逐步改善,在其他電池技術(shù)未實現(xiàn)重大突破之前,三元目前仍然是動力電池領(lǐng)域最優(yōu)之選。
高鎳三元短期普及仍有瓶頸,未來或成為動力電池主流。三元材料指是層狀鎳鈷錳酸復(fù)合材料(錳也可替換為鋁,松下NCA 技術(shù)),三元材料經(jīng)過Ni-Co-Mn的協(xié)同作用(Ni 提升比容量,Co提升離子導(dǎo)電性和倍率性能,Mn穩(wěn)定結(jié)構(gòu)),結(jié)合了三種材料的優(yōu)點:LiCoO2的良好循環(huán)性能,LiNiO2高比容量和LiMnO2的高安全性及低成本。
鈷主要起到提升導(dǎo)電性和倍率性能的作用,并在高電壓下提供部分容量,在三元材料體系中起到關(guān)鍵作用。按照鎳鈷錳的比例,三元可以分為111、523、622、811等,由于鎳主要作用提升能量密度,故高鎳三元材料(如622/811)的研發(fā)成為目前熱點。分廠商來看,目前國內(nèi)普遍在研發(fā)三元622和811技術(shù),還未大規(guī)模量產(chǎn),從國外來看,僅松下等幾家技術(shù)最領(lǐng)先公司有高鎳三元量產(chǎn)技術(shù)(松下NCA給特斯拉供貨,NCA比例8:1.5:0.5)。從技術(shù)角度來看,隨著三元中鎳含量的提升,Ni+2/Li+1 離子混排加劇,材料的結(jié)構(gòu)穩(wěn)定性降低,導(dǎo)致循環(huán)壽命和安全性大幅降低。
該證券總結(jié)了國內(nèi)高鎳三元難以短期大規(guī)模普及原因如下:
從技術(shù)角度:高鎳三元隨著鎳比例提升,鎳鋰離子混排加劇,Ni+2混排在Li層,降低了放電比容量,阻礙了鋰離子的擴散;同時由于鎳在脫嵌鋰過程中相變導(dǎo)致明顯的體積變化,從而使材料結(jié)構(gòu)穩(wěn)定性變差,循環(huán)壽命下降;高鎳正極表面更容易形成碳酸鋰等雜質(zhì)(鎳含量超過60%后明顯增多),從而與電解液發(fā)生副反應(yīng)降低循環(huán)壽命,高溫嚴(yán)重會導(dǎo)致脹氣;隨著鎳增加,正極材料熱穩(wěn)定性降低,且放熱增加,材料熱穩(wěn)定性變差;不同材料體系需要匹配不同電解液配方,而高鎳三元由于表面雜質(zhì)增多,其需要更為優(yōu)化的電解液配方,而從國內(nèi)技術(shù)來看電解液匹配問題也是一大難題。
從應(yīng)用角度:高鎳三元材料由于其固有屬性如結(jié)構(gòu)不穩(wěn)定,熱穩(wěn)定性和循環(huán)壽命都較差,從目前國內(nèi)廠家研發(fā)進度來看,目前還沒有完全解決高鎳材料實際應(yīng)用時的安全性問題;由于高鎳三元材料在電池組裝時不能接觸空氣,需要純氧氛圍,而由于國內(nèi)電池企業(yè)都是從三元NCM111開始起步,NCM111組裝并不需要純氧氛圍,所以國內(nèi)電池廠幾乎沒有氧燒工藝,而為了量產(chǎn)NCM811就必須重新設(shè)計廠房和設(shè)備,而裝備制造工藝的落后也是制約NCM811量產(chǎn)的一大難題。


